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DIFFERENTIABLE FUNCTIONS ON BANACH SPACES
WITH LIPSCHITZ DERIVATIVES

JOHN C. WELLS

Introduction

. In this paper we study those functions in C*(E, F), (i.e., functions from two
Banach spaces E to F having k continuous Frechet derivatives), whose k-th
derivative is Lipschitz with constant M. On R* we construct C* functions whose
derivatives are piecewise linear with Lipschitz constant M. From this we obtain
a Whitney type extension theorem for real-valued differentiable functions on
Hilbert space, and show that every Hilbert space has C* partitions of unity. We
examine the existence of “nontrivial” C* functions with Lipschitz derivatives
on separable Banach space and show that ¢, has no “nontrivial” C* function
with Lipschitz derivative. We show that the Whitney extension theorem fails
for separable Hilbert space by exhibiting a C* function on a closed subset of I
having no C* extension.
We make the definitions :

B(E, F) = {f|f € CX(E, F) and ||D*/(y) — D*/(x)| < M||x — y| for all x, ¥},
B¥(E,F) = {f|f € BX(E, F) for some M} .

As in Bonic and Frampton [2] a Banach space E is said to be B* smooth if
there is a function f € B*(E, R) with f(0) = 0 and support (f) bounded. Then
B¥*! smoothness implies B* smoothness, and F is said to be B~ smooth if E is B*
smooth for all k. We briefly summarize some results concerning C* smoothness
of separable Banach spaces. We refer to [2] and Eells [5] for more details.

1. Hilbert space is C* smooth with C* norm away from zero.

2. ¢, is C* smooth with equivalent C* norm away from zero. Kuiper.

3. A Lebesgue space .#? is C~ smooth for an even integer p, and C*™!
smooth but not D? smooth for an odd integer p; Bonic and Frampton [2].

4. 1If E is separable, then E has a norm in CE ~ {0}, R) if and only if E*
is separable; Bonic and Reis [3]. :

5. Any C* smooth separable Banach space has C* partitions of unity ; Bonic
and Frampton [2]. '

In § 2 we prove some basic properties of B%(E, F), the most useful one
being that {f{||f{l < b on some open subset of E} N B5(E, F) is closed in the
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topology of pointwise convergence. We observe from [2] that an #? space is
B~ smooth for an even integer p and B?-"1 smooth when p is not. We show
that ¢, is not B* smooth and that every B* smooth separable Banach space has
B* partitions of unity. These last two results were announced in Wells [10].

The distance function from a convex set is studied in § 3, and we show that
if | x| ¢ B%(E, R) then distance *(x, A) € B%(E, R) for closed and convex A.

In § 4 we make a cellular decomposition of R on which a B}, function is
constructed with prescribed values and derivatives at a finite number of points.
Using these functions we obtain a necessary and sufficient condition for a real-
valued function defined on a closed subset of Hilbert space to have a B}, ex-
tension to all of Hilbert space. One of the properties of this extension implies
that every closed subset of Hilbert space is the zero set of a B'(H, R) function.
Thus a nonseparable Hilbert space has C* partitions of unity by an easy con-
struction; this result was announced in Wells [11].

In §5 we exhibit a closed convex subset in F for which there exists no B®
function satisfying f(4) = 0 and f({x{||d(x, A)|| > 1}) > 1. A corollary of this
is that the Whitney extension theorem fails for C* functions on Hilbert space.
We end the section with some open problems. :

2. B* functions and B* smooth Banach spaces

If f has a j-th Frechet derivative at x, we will let D/f(x)[h] denote the j-multi-
linear map D?f(x) acting on (k, - --,h). A version of Taylor’s theorem reads
(refer to Abraham and Robbin [1] and Dieudonné [4]):

Taylor’s theorem. If f(x) ¢ C*(E, F) where E and F are Banach spaces, then

o+ B) — f@) — 3 Dif(i:f)[h]

il

= 19_:2': k _
= ) G pr®e ) — DA

Proposition 1. [f f ¢ BE(E, F), then
(1) H fx + h) — f(x) — f_, Dif(x)[h]/j} “ < MYk + DY .
i=1 .

Proof. Immediate from Taylor’s theorem.

Proposition 2. B%(E,F) = {f| 1) f is bounded on some open set, 2) for
every finite dimensional linear subspace H, f|z(x) is continuous, 3) letting
4 f(x) = f(x + h) — f(x), | 45 x| < M| A |+ for all x and h in E}.

Proof. Suppose f ¢ B4(E, F). By the mean value theorem, we have

457 f(x) = A, 45f(x) = LDf(x + c,h)[H]
= e = Athf(x + Clh + ... + Ckh)[h]

for some 0 < ¢, < 1. So ||4E+f(x)|] < M Aj*+2.

(2)
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Suppose that f(x) satisfies the conditions on the right side of (2). For any finite
dimensional linear subspace H, find a measure g, on H and a ¢y, € C*(H, R)

with fgo,,,nd,,H =1,04.>0 and |y} > 1/n=y¢ support gy ,. Define
Fora®) Y fra@ = [ 15 + ,n0)sg). Then

fual + B) = falx) = f @ + Y Don 0—h] + o(iAD)d,O) ,

SO

[l + ) — farn) — f fx + MDoy = Kldu, | = o(Il) ,

and Df, .(0)A] = f fx + YDy, OV —hld,. (y). Repeating this argument
gives fy . € C~(H, F). Now Lim fu.=(x) = f(x) for x € H, and

145501 = | [ 457 + P a0, 00| < MU

So by (2) we have sup||D**!fy ()| <M and fy , e B4 (H, F), and Dify ,(x)

is uniformly equicontinuous on bounded sets in H for i < k. By the Ascoli-
Arzela theorem, there are a subsequence m of » and a dif(x) € LE(H, F) with
hm Dy o(x) = dif(x). Using Proposition 1 and taking m — o we obtain
lf(x + ) — f(x) — DEaduf()MR] /il < M| BJF (0 + DL

For any other finite dimensional H’, di.f(x)[h] = diLf(x)[A] if x,x’,he H N
H’, so we have maps d*f(x) i-multilinear from E to F at each x with

Hf(x +h) — @) — z dif )R] /i

< MYRIF+ (e + DY

Suppose that f is bounded near x,. Find 4 such that ||f(y)|| < B when ||y — x|
< 6. Then for || k|| = 1 we have

o) w220

J=1 k "i
< _J___M(él_> < M
(k + 1! k k + D!

so [| ok, (i/k)df(x)[6h] [j!]| < 2B + Mé&*+' /(k + 1)!. Since the k X k matrix
A;y = ({/k)[j! is invertible, || d’f(x)[A]|| < k|47 (2B + Mo**! /(k + 1)1)/8,
and so df(x,) is bounded at x, for i=1, ---, k. Now f, , € B4, (E, F),
SO [|D¥fx,n(x + B)K] — D*y o ) KT < MY |A|F* for x, h, i e H.
- Using the fact that d*f(x,) is bounded at x, and taking limits over m give
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d*f(x) e By (E, L{(E, F)). Now dif(x + h) — d¥f(x) = Lim D¥fy »(x + h) —

D¥fy,»(x) = Lim f Di*Yf, (x + th)[h]ldt. By the uniform convergence of
[
Di*fy (x + th) on 0 < ¢t < 1, this is equal to fldf“f(x + th)[kldt. Thus
0 .

dif(x + h) — di(x) = f d7*Y(x + th)[A]dt, and by taking j = k — 1,k — 2,

-, 0 we have Dd’f(x) = d’*'f(x) and f(x) ¢ B%(E, F) with DIf = d’f.
Proposmon 3. Suppose f, e BY(E, F) and L1m fo2(0) = f(x) for all x in E.
If f, are uniformly bounded on some open set, then f e BX(E, F) and Df(x)[k]
= Lim D/f,()[A]-
Proof. The f,|z(x) are uniformly equicontinuous on bounded sets in a finite
dimensional linear subspace H of E, so f|z(x) is continuous. Also

(457 f(@] = {|Lim 45 f, (0l < M - ||A]F* .

By Proposition 2, f ¢ B% (E, F). Using (2) we have Df(x)[h] = I_z,ll;n A f(x) /e
= Lim Lim A fo X)) = Lim Lim A fo )/t = Li’;n Df,(x)[A] by the uni- -
form convergence of Lm1 4 hf,,(x) / tf in p.

Proposition 4 (Inverse Taylor’s theorem). Suppose f: E — F is bounded
on some open set, and for all x there are maps d’f(x): j-multilinear from E to

F satisfying
” fx + k) — f(x) — ; AR ! H < MR+ DY

Then f e B4(E, F) and Df(x) = d?f(x). . .
Proof. For any x and h, ||f(x + ph) — f(x) — 35, pd’f(0)[R]/j!| <

M- pE+{ h[[E+1, Also TES (— 1)?(" + I)pf = 0for 0 < j < k, so multiplying

p=0
the first equations by (—I)P(k T 1) and adding from p = 0, ---, k + 1 give

”AI.Hf(x)” — f‘ ZLH 1)p<k + I)f(x + ph) { < M l:+1 (k + 1) k+1'ih“k+l
Hence by Proposmon 2, f e BX(E, F) and fo(x) d’f(x). Suppose x,h, A’ ¢ a
finite dimensional linear subspace H, and let {5 , = f f&x + You,.3)d. (¥} as

in Proposition 2. Then f,, satisfies (3) with D'fy , = f D¥(x + ou0)dsy )

and so ||D¥*fy .|| < M. Thus fy ,e By (H, F), and ||D*f(x + h)[H'] —
D)1l = Lim | D¥fy, , (x + WIA] — D¥*fy . I < M| - |H]E. So
fe BYE(E,F). q.e.d.
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By proposition 2 we can characterize B%(E, F) without mentioning the de-
rivatives.

Even though at every x, f(x) = Lipm f»(x) in norm, Df,(x) need not approach
D’f(x) in norm as the example f,(x) = {e,, x> where e, is an orthonormal basis
in # and f(x) = O shows.

Corollary 1. For any real number b and open U in E,X = B%(E,F) N
{fIlf®} < b for x e U} is compact in the topology of pointwise convergence
on E to the weak topology on F.

Proof. Letb(x) = sup [If(x)}|. Then by Proposition 3, BL(E, F) N {f{||f(x)||

<bforxeUl}is closed in the compact [[ ..z b(x) C FE.

Corollary 2. BY(E, F) = {f|f(x) ¢ C°(E, F) and ||f(x +h) + f(x — k) —
2| < M.

Remarks. The class B*(E,F) may be extended to a class U¥E,F) =
{fIf e C¥(E, F) and for every x in E there are a neighborhood U of x and a M
such that fi; € By (U, F)}. Then C**Y(E, F) C UXE, F) C C*(E, F), and Propo-
sitions 1, - - -, 4 have obvious generalizations to U*(E, F).

Theorem 1. Suppose that E is a B? smooth separable Banach space, and
{U.} is an open cover. Then there exists a partition {f;} of unity reﬁnmg {U }
with {, ¢ B*(E, R) for each'i. :

Proof. We find two countable locally finite open covers {V}}, {V'}} refining
{U,} and maps g; ¢ B?(E, R) such that 7} C V2,0 < g,(x) < 1,2,V = 1 and
g:(CV?) = 0. For every xc E find a ¢, € B(E,R) such that 0 < ¢, < 1,
0,(x) = 1 and that support ¢, is contained in some U,. Let 4, = {y|¢.(») >
1/2}. Then {A4,} covers E and, since E is Lindelof, we can extract a countable
subset {4} of {4.} which also covers E. Nowlet B, = {t, > 1/2,¢;, < 1/2 +
1/j,i<jl Cy={t; < 1/2—1/j,or t; > 1/2 + 2/j, for some i < j} in R’.
Then distance (B;, C,) >0, and we can find 7; € B?(R{, R), withz,(t;, - - -, 2)=1
for (t,, ---,tpeByand (¢, - -+, t;) = 0 for (¢, - - -, 2,) € C;. Let ¥, (x) = ¢,
and ¥,(8) = 7,(p (%), - - -, 9,,(®) for j > 2. Define V2 = {x|s(x) > 1/2},

= {x|¢;(x) > 0}. Since V} C support ¢, {V?} refines {U,}. To show that
{V1} covers E, suppose that x ¢ E and that i(x) is the first integer for which
¢{x) > 1/2. Such an integer exists because the 4;’s cover E. Then v;;, = 1,
and hence x e Vi, so {V!} covers E. Now again suppose that x ¢ E and find
an integer n(x) such that ¢, ,,(x) > 1/2. Then there exist, by the continuity of
©nzy, @ Deighborhood N, of x and an a, > 1/2 such that yig;: Oy = .
Pick k large enough so that k > n(x) and 2/k < a, — 1/2. Then for j > &,
On () > 1/2 + 2/j for ye N,, and hence v;(y) = 0 for y ¢ N,. There-
fore N, N V% =@ for j > k so that {V'%} is locally finite. Finally take some
heB*(R,R)with h(!) = 1 fort<Oand A(t) =0 for 1 >1/2,0<h < 1.
Defining g,(x) = h(yr;(x)) we have that g, ¢ B*(E,R)and 0 < g < 1, gy =1
£(CV) = 0. Now let /,(x) = g,(x) and f,(x) = g,()(1 — £(x))- - -(1 — g;_,(x))
for i > 2. Then f; ¢ B?(E, R) and support f; C support g; C V7, hence every
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point of E has a neighborhood on all but a finite number of f;’s vanish. Since
{xlg:(x) =1} D>V Tl (1 — g,(x)) =0 for every x and some n. Also
rfi0)=1— Hz=1 (1 — g:;(x)), so 1, fi(x) = 1 and {f;} is a partition of
unity refining {U,} with f, e B? for each i. q.e.d.

For the #? spaces it can be shown that for p an even integer D?*!|{x[|? = O
and that for p not an even integer || D%||x + &[? — D*{{x|{?|| < (p!/k D] A}P~*
(see Bonic and Frampton [2]). So #? is B~ smooth for p an even integer and
#7? is Bl»-1 smooth for p not an even integer. Not every C' smooth space is
B? smooth as the following corollary shows (see also Wells [10]).

Theorem 2. If n = 2%, endow n-dimensional Euclidean space E™ with the
norm x| = ) sup |x:|. Suppose fe By (E",R) with f(0) =0 and f(x) > 1

when || x|| > 1 Then M > 2N.
Proof. Assume M < 2N, and let 4 = {x[x;, = £1/N for i= 1,

except for at most one i, where |x,| < 1/N}. Then A is radially symmetnc
and connected, so there is an A, ¢ A4 with Df(0)[#,] = 0. k, has at least 271
components = 1/N. Likewise there is an %, ¢ 4 with Df(h)[k,] = 0, and we
can choose o, = +1 so that &, + o,h, has at least 2¥~* components equal to
2/N. Inductively choose , € 4 and g, k = 3, - - -, N, such that Df(h, + a;h,
+ +++ + gx_the_ )R] = 0 and that h, + o;h, + --- + och; has 2Y% com--
ponents equal to k/N. Then ||k, + --- + oyhy|| = 1 so by Proposition 1,

Il - 0= lf(h1 +oh + -0 + O'NhN) - f(o)l
N
= kz_':l (f(h1 + Uzkz + -+ a'khk) - f(h1 + o'zhz + e+ ak—lhk-l)l
< N-JMN- <1,

a contradiction.
Corollary 3. ¢, is not B! smooth.
Proof. Assume f ¢ By(c,, R) with f(0) = Qand f(1) > 1 when ||x]| > 1, and
restrict f to {x|x; = 0,i > 2™*Y/%} to get a contradiction to the theorem.
Remark. In this theorem we have only used the uniform continuity of Df.

3. Convex sets and B}, functions

If 4 is a subset of 2 Banach space E, let d(x, 4) = inf {{y — x|l. Then
d(x,A) e BXE,R). If 4 is convex, d(x, A) shares many of the properties of
[ix||l. The first proposition is well-known. See Restrepo [8] or Phelps [7].

Proposition 5. Let A be a closed convex subset of a Banack space with
norm differentiable away from zero. Suppose that d(x, A) = ||x — p(x)}} for
every x in E and some p(x) in A. Then d(x, A) e D(E — A, R) and Dd(x, A)
= D ||(x — p(x)).

Proof. Let D||/(x) denote the derivative of ||| at x. Then for xe 4,
Ix + b — p] = |x — p®] + D |(x — peNIA] + o(|k]), and for any A
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with p(x) + ke A, |x — ((x) + B)|| > x — p(x)|| which implies D (x —
p(x)[h] < 0. Thus the hyperplane L = {y|D|||(x — p(x)y — p(x)] = 0} is
a supporting hyperplane for 4 at p(x), and d(x + h, L) < d(x + h, A) <
d(x + h, p(x)) so that

llx — pG) + D {{(x — p(x)iA]
< dx + h, 4) < [x — p®| + D (x — pGHIA] + oAl .

Hence 0 < d(x + h, A) — d(x, A) — D |(x — p()IK] < o(jA)), and so
d(x, A) is differentiable at x and Dd(x, A) = D||||(x — p(x)).

Proposition 6. If A is closed and convex and || x| e By, ({x]l{x]| > «}, R),
then d(x, A) e By, ({x|d(x, A) > a}, R).

Proof. Suppose that every point x in E has a closest point p(x) in 4. By
Proposition 1, if d(x, p(x)), d(x + &, p(x)) > «, then [d(x + &, p(x)) — d(x, p(x))
— Djj|| (x — p(x)[A]| < $M| h|}F /e, and we have

0 < d(x + h, A) — d(x, 4) — D|[[(x — p(x)IA] < $M|AI [«

by arguing as in Proposition 5, and therefore d(x, 4) ¢ B, ({x}d(x, 4) > «}, R)
by Proposition 4. Now suppose that A is arbitrary. If H is a finite dimensional
linear subspace, then every point in E has a closest point in 4 N H. Hence
d(x, A N H) e By, ({x|d(x, A) > «}, R). With the finite dimensional linear
subspaces ordered by inclusion, d(x, A) = Lliim d(x, A N H) e By, ({x}jd(x, 4)
>(a}, R) by Proposition 3.

Proposition 7. Suppose that A is a closed convex subset of E and that
x| € BY4(E, R). Then d*(x, A) ¢ By,(E; R).

Proof. Suppose every point x of E has a closest point p(x) of 4. Then

&(x + b, 4) < ||x + b — p(If
<lx — p®)IF + D) F(x — pGe)IR] + M| AR

Defining L = {y|D||||(x — p(x)[y — p(x)] = 0} gives

d(x + h,4) > d(x + h, L) = (jx — p(@)|| + D |(x — pG)A]Y
2 llx — p@)[F + 2D |(x — pG)IAllx — pG))
= {|x — p@)|F + D [F(x — p(x)LA],

so |d*(x + h, A) — &(x, A) — D|||*(x — pG)iAl| < IM kP Thus d*(x, 4) €
BY(E, R) by Proposition 4. Taking limits of d*(x, 4 N H) over finite dimen-
sional linear spaces H gives as above d*(x, A) € BY,(E, R) for arbitrary 4.

Remarks. If E happens to be uniformly convex, then every point x has a
closest point p(x) in a closed convex A4 and p(x) is continuous. So, if ||x|j €
CYE — {0}, R), then d(x, A) ¢ C(E — A4, R). The question of whether || x| e
CY(E — {0}, R) implies d(x, A) € C'(E — A4, R) in general remains open.
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4. B functions on Hilbert space

We will suppose that H is a real Hilbert space endowed with the usual norm,
and we will identify H* with H and write {y, x> = y-x and ||x|? = x%

We recall the Whitney extension theorem (see Abraham and Robbin [1]):
Let A C R™ be a closed subset, and f;,,i =0, -.-,k: A —= L{(R* F), F an-
other Banach space, and suppose .

Lim _ f;0) — 2@y — 21/ = pU/lx ~ y[F~! = 0.

T\Y-T0; T,YsToEA
Then f, has a C* extension to R* with D7fy(x) = f;(x) for xe 4.

In this section we prove a version of this for real-valued B! functions on
Hilbert space, and show that C' partitions of unity exist on any non-separable
Hilbert space.

Theorem 1. Let A = {p, -, p,} be a finite subset of R* endowed with
the usual norm. Let a,_ e R,y, € R* fori =1, - - -, m satisfy

(4)  ap < ap + 30, + 900" — D) + M@ — PP — 10, — ¥, /M
forall p, p’ in A. Then there exists an f(x) e B, (R*, R) with f(p) = a,, Df(p) = ¥,

for pin A and f(x) > ;125 la, — 3% /M + tM(x — p + y,/M)*]. Further, if
g(x) e By(R", R) with g(p) = a,, Dg(p) = y, when p e A, then g(x) < f(x) for
all x. .

Proof. We first construct a convex linear cell complex and a dual complex.
From these a cellular decomposition of R* is constructed on which f is defined.
Df will turn out to be piecewise linear.

Definition. When p ¢ 4 we define:

P=p—y,/M, p=1{0|p =p,ped},
d(x) = a, — ¥, /M + IM(x — p)*.

Definition. When S C A4 we define:

ds(x) = infdy¥), §={plpes},
Sy = smallest hyperplane containing s, _
Sz = {x|dy(x) = dyp.(x) for all p, P’ € S},
Sy = {x|dp(x) = dp.(x) < dp..(x) for all p,p’ e S,p" € A4},
K = {S|S C A and for some x € S, ds(x) < d,_s(x)} .
So,if peSeKthenp C S.

Definition. S = convex hull of §.
Lemma 1. {p, p’}z = R® or an (n — 1)-dimensional hyperplane, and

F—p1{pps
Proof. dp(x) — dp.(x) = (a, — 3Y%/M) — (ap. — §V3./M) + P — P +
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2x.(p" — p). If p=%p, this immediately gives the lemma. If § = j’, then
p—pr = (y,, — ¥p.) /M and (4) gives ap — 3. /M < a, — 1¥% /M. Reversing
p and p’ gives dp(x) = d,.(x).

Lemma 2. S, is closed and convex.

Proof. By the definition and Lemma 1, S, is the intersection of closed
convex sets.

Definition. Let $°, S% be the relatlve boundaries of S, Sy if dim §
dim §, = 0, in which case let %, Si be the relative interiors; if dim S,
dlmS =0, let $* =@, 5% _{ZfS“ § and S = S,.

Lemma 3. Sy | Sg, and if Sy # @, then dim Sz + dim Sy = n.

Proof. Sz = ﬂs{p, P’} together with Lemma 1 implies S, | Sz. Assume

p,p’€

dimS; +dimS;=nfor ¥ =S —7, and p e S — P. Then by Lemma 1
dim (p, p)y + dim (p, p)r = 1, and dim Sy = dim({p, P}z N (S —P)p) = n
—dim({p, p'}x U (S — P)g) = n — dim Sy. By induction dimSy; + dimS; = n
for all S.

Lemmad. IfSC S, then S, CS,. If S,5 €K, then S & 8 if and only

if S & Sy, and S = §' if and only if S, = S,.
- - Proof. The first statement follows from the definition of S,. If § C §" and
S,5 ek, find ze S, with dg(z) < dg _5(z) so that S, == S, and §, & S, If
S, CS,, findze S, w1thds(z) < d,_5(2). So, 1fpeS thends(z) = d (z),
sopeAd ~S', and hence SC §'.

Lemma §. If SeK, then S, = {x|x e Sz, ds(x) < d4_s(x)}.

Proof. I S<K, then clearly {x|xe Sz, ds(x) < d,_s(x)} T S%. Suppose
xeSiandpeS, p’ e 4 with d,(x) = d,.(x). Then the hyperplane 4,(x) = d,,.(x)
must contain all of S, so p’ € S. Therefore dg(x) < d4_s(x).

Lemma 6. d,.0) — d,(¢) = d,.(3) — d,0) + 20/ — »)-(p = D).

Proof. Immediate from the definition.

Lemma7. § | S,.ForSeK,dimS$ + dimS, = n.

Proof. Sy | Sy implies the first part. Suppose S ¢ K and find z ¢ S, with
ds(z) < d4_g(z). But then for some e, open ball center z radiuse N S C S,
so dim S, = dim S and dim § + dim S, = n.

Definiion. If S,5:0, let S = {p|p e 4, d,(2) = dy(2) for all z¢ S,}.

Lemma8. IfS, 0, thenSeK and S, = S,.

Proof. Immediate from the definitions.

Lemma9. () IfS,ScKand SNS %@, thenSNSeKandSnY
= S/ﬂ\S'.

() IfS,SeKandS, NSy +0,thenS, NS =EUS),.

Proof. (a) Assume S¢ S and ' S, and find ye S,, ¥y ¢S, with
ds(y) <d,_s(),ds () <dy_s(). Then L = cohull {y,y"} < (S N §"5. For
any p'e A —(SU S)and pe SN S, the half space d,(x) > d,.(x) does not
contain y or y*, so it does not contain L. ForpeS N and p/ e (§ — ) U
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(8" — 8), the half space d,(x) > d,.(x) does not contain both y and y’. Since
dp () = d,(¥) or d,,(3") = d,(3), the half space d,(x) > d,.(x) can not inter-
sect Lt, Plckmg ze L? we have dgq.(2) < dg_ sﬁs(z), SO S nNsek.5ns

= S/ﬂ\S’ is obvious.
(b) Observe (S U 8, = S, N S, and use Lemma 8.
Lemma10. If SeK,then$ = |J .

S ‘@S,8’e K
Proof. Suppose x € $*. Then x ¢ § for some S’ C § with & c §°. Find an

(n — 1)-dimensional hyperplane M containing &, supporting the convex set S
but not containing S Find y ¢ S, with dg(y) < d,_5(3), and find ¥’ % y with
y—y 1M, WlthSonthesxdeomedlrectlony toyandds 0 <d,_ 0.

Then ¥ —y | (S N M)y which implies y’ ¢ Sz. For all p’e S’ and pe S,

(7 — PO —¥) > 0. Thus d,() > d,.() by Lemma 6 so that ds.()) <
ds(y). Also (p — p)(y — ¥) > 0 for some pe S — M and all p’ e S, so by
Lemma 6, d,(y) > d,.(/); hence ds.(y) < dp(y’). Thus y' e S, and y' ¢ S,.

So S, =S4 RS, and xe & < & < §with & ¢ K by Lemmas 8 and 4.

Suppose on the other hand that S’ & S, S¢ K. Then S} 2 S, by Lemma
4,sowecan find y e S} — S, and ye S,. Take some p'¢S’, and let M =
ZO =)~ p) = 0} Then ¥y, Y € Sy, and S; C M by Lemma 2 and so
§’cM. Now if peS — 8, then d,(0) < dp(¥). Since d, (») = dp(»),
o —=¥)-(p —p)>0byLemma 6 and p lies on the side of M in d1rect1on
¥’ to y. Hence M supports Sand § c $.

Lemma 11, IfSeK, then S, = |\J S%.

§'RS,8’eK

Proof. By Lemma 5, x ¢ S5, if and only if x € % for some §' 2 S. But then
xeS, withS’'eKand 5 D8 2 S.

By Lemmas 9, 10, 11, | § is a cell complex, and U S, is a cell complex of

SEK

R? U oo dual to USby Lemma 4. We show that US_ cohull 4. We can

assume that dim A = n. Suppose S ¢ K with dim S = n — 1. From Lemma 6
we see that S, extends infinitely in a half space determined by Sy if and only
if there are no points of 4 in that open half space. Hence § C (cohull A if
and only if S, has only one boundary point if and only if S does not lie on the
boundary of two other $’s in K by Lemma 11. Now there are members of K
with dim § = »n, otherwise if dim §’ = glademS < n then S, = S%. How-

ever, p’ € S’ implies that {p’, p”’}; must intersect S% for some p”’ ¢ 4, otherwise
dim A would be less than n. Thus St # S,, a contradiction. Hence §§ #
( ) < (cohull A" 50 that | § = cohull 4.

SeX,dim S=n

We also observe that for any x in R" if we let S = {p|d,(x) = mf d,p-(x)}
then Se¢ K and x ¢ S,. Hence {_J S, = R”. Fig. 1 shows an example of these

Sex
two cell complexes.
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12+

1.

We now perform another decomposition of R™.

Definition. For all Se K let Ts = {x|x = }(y + 2) for some ye S and
ze S} :

Lemma 12. T is closed and convex with nonempty interior.

Proof. Immediate from Lemmas 2 and 3.

Lemma 13. The representation x = ¥y 4 2), y e ,§, zeS, for xeTs is
unique.

Proof. Suppose x = 3(y/ + 2), ¥ € S, e S, also. Then y — y =
—(z—2Z),andy ~y | z—2Z byLemma3,soy=)y and z = 7.

Lemmald. To N T ={xlx=14>+ 2,yeS N §,z¢8, N S}

Proof. Immediate from Lemma 13.

Lemma 15. (a) (TsNTs)X=0ifS= S, and (b) T C U Ts..

o~ 5,5'¢K,8'®Sor §'%S

Proof. (@ SNS=8SNY,andSNS ek by Lemma 9. If § # 5/, then
SN c8ors?, sodim(S N §) < max (dim S, dim §) = 7 — min (dim S,
dimS§,) < n — dim (S, N S%). By Lemma 14, dim (Ts N Ts.) < n and the
interior of Tg N T is empty.

(b) If xe T3, then x = 4(y + z) where y e S® and/or ze S%. So ye S
and/or z e S) for some S’ S and $” 2 S by Lemmas 10 and 11. Hence
xeTs and/or Te.. with S’ & S and/or §” 2 S.

Lemma 16. T3 N Ts = Tgns: N Tios.

A o4 Pl =
Proof. SN8&=SNSNSUS,and S, NSe=E NN NS U,
by Lemma 9, and Lemma 16 follows from Lemma 14.
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Lemma 17. J T = R".
Sex
Proof. Since the complement of a closed convex set is locally connected

and T% N T = @ if § % S, this lemma follows from the next proposition.
Proposition 8. Let {T,} be locally finite collection of nonempty closed sub-

sets of a connected space E. Suppose that the T.s have disjoint interiors, E — T,

is connected in some neighborhood of each point of E for eachi, and T: < | T;.

ES
Then \ T, =E.
Proof. | ) T is closed since {T;} is locally finite. Suppose that whenever a
0
point y of E is contained in & or less T,;’s then y ¢ (UL) .M xeTy, -, T,

and no others, then we can find a neighborhood U about x which meets only
T;, .-+, T; and such that U — T, is connected. Thus T;, U---U Ty, is
open and closed in U — T;, by assumption, and so contains all of U — T,.
This implies that U C T, U---U T, so that xe | T;. The statement is

true for £ = 1, so by induction x ¢ U T? for all xe E. Hence | T is open,
and | T; = E since is connected. q.e.d.

Fig. 2 illustrates the T’s superimposed on the dual complexes of Fig. 1.
Definition. S; = Sy N S for S e K. S; is a point by Lemma 3.

We now construct f on R*,
Definition. fs(x) = dg(Se) + IMd*(x,S,) — tMd*(x,S) for S¢ K and

xeTs.
’
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Lemma 18. fs(x) = fs(x) if xe Ts N Tg..

Proof. By Lemma 16 we can assume that § < §'. Now x = }(y + 2) with
yeScC§, zeS,CS, by Lemma 14, and d(x,Sy) = $d(z,Sy) = 3d(z, S¢)
and d(x, Sz) = $d(y, Sp) = 3d(y, S¢) so that '

fs(x) = ds(Se) + #MdA(Se, 2) — FMA(Se,Y)
Similarly,

fsx) = ds/(Se) + ¥Md(St, z) — $MA(Se, y) .

Now z,8; ¢ 8% and S;, S, ¢S}, and &%z, S + d¥(S., S,) = d¥(z,S,) since
Sy 1 Sy Alsoy, S, € Sy and S¢, S; € Sp.with Sy | Sz, so d¥(y, S¢) + d*(S¢, Sz)
= d*(y,8;). Finally, p — S, | S¢ — S; for pe S, so IMd(S., S) + ds(Se)
= ds(5¢) = ds.(S;). Hence our lemma follows from these equations.

Lemma 19. f;e C~(Ts, R).

Proof. Observe that d*(x, Sz) and d(x, S,) are C=.

Lemma 20. Df(x) = {M(z — y) where x = 4(y + 2), y ¢ Sandz e S

Proof. Dd(x,Sy) = 2||x — Ps,(x)||D]|x — Ps (x)|| = 2(x — Pg,(x)) where
P, (x) is the closest point of S;; to x by Proposition 5. Now x — Pg (x) =
3z — S;), so DIMd¥(x,S;) = IM(z — S;). Likewise Dd(x, Sp) = $M(x —
Ps.(x)) = tM(y — S.) where P (x) is the closest point of Sp to x. Hence
Df(x) = $M(z — y).

Lemma 21. fg(x) ¢ B},(Ts, R).

Proof. Letx,x’eT, x = (y + z) and x’ = 3(¥ + z/) as usual. Then by
Lemma 20,

(Dfs(x) — Dfs(x)) = IM*((z — 2) + &0 — Y = M (x — XY,

since z — 2” | y — ¥'. Hence || Dfs(x) — Dfg(x)|| = Milx — x’|.

Lemma 22, Dfg¢(x) = Dfs.(x) if xe Tg N Ts..

Proof. IfxeTsN Ts,thenx=%4(+2) whereye SN S andzeS, NS,
by Lemma 14. Thus Dfy(x) = $M(z — y) = Dfs.(x) by Lemma 21.

Definition. f(x) = f¢(x) if x ¢ Ts.

f is well defined on R™ by Lemmas 17 and 18, and f € B%(R", R) by Lemmas
21 and 22.

Lemma 23. f(p) = a, and Df(p) = y, if pe A.

Proof. By the definition and an assumption in the hypothesis of Theorem
1, for any p’ € A we can easily obtain d,(p + ¥, /M) = 3, /M +a, <y, /M +
a; + %‘M(p - P’)2 -+ %(yp' -+ )’p)’(p - P’) - '.]i'(yp —yp’)z/M=dp'(p +yp/M)
Thus p + y,/Mep,and p = 4§ + p + ¥,/M) € T3. Hence f(p) = fz(p) =
dz(p) + IM(p — (p — ¥, /M)y = a,, Df(p) = IM((p + ¥,/M) — ) = ¥,
by Lemma 20.

Lemma 24. Suppose g € BY,(R", R) and g(p) = a,, Dg(p) = y, for pe A.
Then g(x} < f(x). '
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Proof. Suppose first that x ¢ T3. Then by Proposition 1, g(x) < a, +
Yp(x — p) + IM(x — p)* = a, — 3y}, /M + IM(x — p)’* = fz(x) = f(x). Sup-
pose next that for all S e K with W(S) < m, g(x) < f(x) for x e Ts. If RR(S)
=m + 1 and xe Tg, then let x = (¥ + 2), yeS, zeS,. Fix z, and define
ew) = g(3w + 2)) — fG(w + 2)) forwe S. Then g(l(w + 7)) e B} ,,,,(S R)
and f(Z(w + z)) = const. — {M(w — S;)* with D, fE(w + 2) = — IM(w
— S¢). For any h with w + he S, De(w + h)lh] — De(w)[h] = tMK* +
DgFw + & + 2)) — Dg(3(w + )[A] > 0. Thus, if e(w) is maximal at w,
then De(w) = 0, so e(w) has its maximum on $°. Since w ¢ S? implies x e S’ for
some §' & S, x = ¥(w + 2) ¢ T, so that e(w) < O by the assumption. Hence
e(w) < 0on S and g(x) < f(x) on Ts. By induction g(x) < f(x) everywhere.

Lemma 25. f(x) > ;lgg d,(x). '

Proof. Take p with d,(x) = (}relg dy(x). Then x ¢ P, so 3(f + x) € Ty and
(5 + X)) = a, — 3, /M + M (x — p)’. Also Df( + x) = M (x —
P). So by Proposition 1, f(x) = fG(x + P) + DfG(x + pHE(x — p)] —
IMG(x = P = dyl).

Lemmas 24 and 25 complete the proof of Theorem 1. We observe from
Lemma 20 that Df is a piecewise linear map from LSJ T to R”, whose deriva-

tive in T% is M -Identity @ — M -Identity on Sz @ Sj.

Lemma 26. Suppose pandp — y,/M e L for all p in A where L is an
affine linear subspace of R*. Then f(x) = f (z,(x)) + $Md*(x, L), where f, is
the function obtained in Theorem 1 by taking L instead of R™ as the underlying
linear space, and = is the orthogonal projection of R™ onto L.

Proof. Observe that pe L for all p in 4 and that K is the same taking
R™ or L. Also Tg on R® = z;(Tgs on L), and a&*(x,S;) = d*(z (x),Sy) +
(x — (%)%, d¥(x,Sg) = d{x (x),Sg). This establishes the lemma.

Theorem 2. Let A be a closed nonempty subset of any Hilbert space H
endowed with the usual norm. Suppose that f, is a real-valued function on A.
Then there exists an f e BY,(H, R) with f|, = f, if and only there is a map
f.:A — H such that for all x,ye A

1) < fol®) + 3 + IO -0 — ®)
+ MO — 2 — 1 (fO) — fx))* /M .
Further, f can be found such that f(x) > inf d, (x) where d,(x) = f,(y) —

/M + IMx —y + fi()/M) and such that if g(x) e By, (H, R) with
g(x) = f,(x) and Dg(x) = f,(x) for x € A, then g(x) < f(x) for all x.

Proof. If f, has an extension f in B, (H, R), let f,(x) = Df(x). Let x,,i =0, 1
be two points in H, set a; = f,(x;) and y; = f,(x;), and define x, = 1(x, + x,)
+ 3(y, — ¥y /M. By Proposition 1 we have

fx) < fx) + Yo B(x, — x0) + 30, — o)) + +MGE(x, — x)) + 30, — Y,
f(-xg) 2 f(xl) - yx'(%(—xz - Xo) - Tzf(yx - yo)) - %"M(jlz'(xl - xo) - ‘;12‘(}’1 - yo))g s

(5)
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so by the parallelogram law,

flap < flixgd 4+ 2y + o3 — x) — 3 — »oF
4+ FAM203(x, — x)) + 205y, — yo) /M)

= f(x) + _()o + ¥)-(xy, — x) + 1M (x, — X)) — 3y, — ¥ /M .

" To go the other way, choose for every finite subset F in A4, a finite dimen-
sional linear subspace Hy of H containing p and p — f,(p) /M for all p in F. By
Theorem 1 construct f; ¢ By, (Hz, R) satisfying f7(p) = f,(p), Df:(p) = f,(p) for
p in F, etc. Now define for x € H, fz(x) = fi(ny(x)) + IMd*(x, Hz). Then
fr € By(H, R), fz(p) = f(p), Dfz(p) = f(p) for pe A, and f, is independent
of H, by Lemma 26. So we have fn(x) > 1nf d,(x), and g(x) < f(x) for all x

in H if g e B, (H, R) with g(p) = f,(p) and Dg(p) = f,(p) for pe A.

Now order # the set of all finite subsets of 4 by inclusion. Then F/ O F
implies fz.(x) < fz(x) for all x, so Lim fr=(x) = f(x) exists for every x, and
f e BY,(H, R) by Proposition 3. Also f(p) Lim f=(p) = Lim fF(x) = f,(p)
for pe A, and Df(p)-z = Lnn SDIrD)-z = fl(p) .z for allz 1n H and pin A4,
so Df(p) = f,(p). f=(x) > mf d (x) for all F gives f(x) > mf d,(x). Finally,
geBy(H,R), glp) = fo(p), and Dg(p) = f,(p) for pe A lmpheS g(x) < fr(x)
for all F, so g(x) < f(x).

Corollary 1. Let A be a closed subset of a Hilbert space H. Then there is
an f € By (H, R) with f(x) > iMd(x, A), and g(x) < f(x) if g € By, (H,R) and
g(A4) = Dg(A4) = 0.

Proof. Take f, = f, = 0 on A. Then d,(x) = M(y — x)*, and the corol-
lary follows.

Remark. If A4 is convex, then iMd(x, A) ¢ By, (H, R) by Proposition 7,
and f(x) < iMd*(x, A) by Proposition 1. So f(x) = IMd*(x, 4).

Corollary 2. Any locally finite open cover {V;} of a Hilbert space H is the
supporting set for a C* partition of unity.

Proof. Find f; € Bi{(H, R) with f,(x) > d*(x,H — V;). Then V', = f;}(R*),
and by defining ¢;(x) = f,(x)/ . ; f;(x) we have a C* partition {¢,} of unity with
V=7 (R"). Actually ¢; e U'(H, R) in the sense of the remark following
Corollary 2 of §2.

Corollary 3. C'(H, F) is uniformly dense in C°(H, F) for a Hilbert space H
and any Banach space F.

Corollary 4. Given A and B closed in a Hilbert space H with d(4, B) =
>0, thereisanf ¢ B};(H,R) with0 < f(x) < 1 and f(4) = O and {(B) = 1.

Proof. Let B’ = {x{d(x, A) > &}. Let f,(4) =0, f,(B) =1, f,(4) =
fi(BY) = 0. Then (5) holds with M = 4/, and we have fe },(H, R) with
f(4) =0, f(B) = 1.

Since d(x,{4 U B’)) < é for all x, m = sup f(x) < co. Suppose m > 1, and
find a sequence x, in H — B’ with f(x,) — m and a sequence z, ¢ A with
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lx, — z,)] < 6. Then m > f(x, + 6(Df(x,))) = f(x) + §&Df(x,) | by
Proposition 1. So || Df(x,)|| — 0. But then (5) implies m = Lim [f(x,) — f(z,)]
< 1, a contradiction, som < 1land 0 < f(x) < 1.

Corollary 5. Suppose A is closed in Hilbert space H, and f,:H — R™ and
f,:H — L(H, R™) with

u, fO)> < <us f(x)) + (u, 3(Df(xX) + DIONY — xI)
+ Mx — y)* — (K, DfO) — Dfx)>)'/M

for all x,y e H and u e R™, ||u|| = 1. Then there is an f ¢ B, ,-(H, R™) such
that f(x) = fy(x) and Df(x) = f(x) for x in A.

Proof. Lete, ---,e, be an orthonormal basis for R", extend {f,, e;> to
fty - -, f* and set f(x) = fi(x)e, + - .- + fA(x)e,.

Corollary 6. Given g(x) e B%(H, R), a Hilbert space H and an ¢ > Q, there
is an f e By, (H, R) with |f(x) — g(x)| < ¢ for all x.

Proof. LetAd,=g"'ng),n=0,=1,x2,-... Thend(4,,A4,.,) >¢/M,
and by Corollary 4 we can find f, € By, (H, R) with f,(A4,) = ne, f,(4,.) =
(n+ Deand ne < f, < (n 4+ 1)e. Let f(x) = ne if x € A, and f(x) = f,(x) if
ne < f(x) < (n + 1e. '

Remark. This corollary is not true if R is replaced by £. Take H = [?, and
let o(x) = XJ;|x;|e; where {e;} is an orthonormal basis. Then ¢ ¢ B)(#%, I?), but
sup |f(x) — o(x)|] > 1 for f ¢ B*(l%, P). This was proved in Welis [12].

=<1

5. B* functions and some open problems

The corollary of the next theorem shows that Corollary 4 of § 4 is not true
if B! is replaced by B? even for 4 convex and bounded.

Theorem 1. Suppose f e B4, (RV,R), f(4) = 0, and f(x) > 1 when d(x, A)
> 1 where A = {x|x; (i-th coordinate of x) < 0, ||x|| < 1}. Then N < M* +
36M°,

Proof. Assume fe B} (R*, R), f(4) =0, f({x|d(x, 4) > 1) >1 and
N> M + 36M'. Let g(x) = 3 .5, f(p(x))/N! where Sy is the set of all
permutations of the N coordinates of x. Then ge B%L(R”, R) with g(4) =0
and g({x|d(x, 4) > 1}) > 1. Define points y* forn = 0, - - -, M* with y} = 1 /M
fori=1,.---,n,y? = —1/Mfori=n~+1,-..,M* and y? = Ofori = M*
+1,..-,N.Definez*forn=1,..., M withz? = 1 /Mfori=1,..--,n—1,
22=0,2=—1/Mfori=n+1,--- M, andz?=0fori=M*+1,-..,N.
By symmetry, :axi(z”) = -ﬁg—(z") form=M +1,---,N. So

0 n

80X,

| g P (2< I sy 188 1 up P 1|2<___1.___
1ax,,( )| < S T ek, @) < g 1 PEOF < 5535
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or aai (z")§ < 611\4 . Now by Proposition 1,
g™ < g(z) + K1/1—%’;(1” + %Ti—aig—( e ‘% (\Xll—)a
<s@) 4o+ oo aaf @ + :
80" 2 8@) — o + o :x @) = s

so g(y") < g(3*~Y) + $M-* Summing up from n = 1, - . ., M? gives g(y™") <
g + 2/3. But ¥’ ¢ 4 with g()°) = 0, and d(y¥*, 4) = 1 with g(**) > 1, a
contradiction. Hence N << M* + 36M°.

Corollary 1. Ler 4 = {x|xe I}, x; < 0, ||x|| < 1}, and suppose f ¢ CX(F, R)
with f(4) = 0 and f({x|d(x, A) > 1}) > 1. Then f ¢ B¥l, B).

Proof. Obvious from the theorem.

Corollary 2. There exist a closed subset of I* and functions fy, f,, foy f2: A —
R, L(I*, R), L¥#, R), L P, R) satisfying the conditions of the Whitney extension
theorem with the property that there is no C* or B* function agreeing with f, on
the closed ser.

Proof. Let4 ={x|x,=1,x,<0forj=2,3,---, and ||x — &} < 1},
and B = {x|x, = 1, d(x, 4) > 1}. Let CA and CB be the cones formed on 4
and B with the origin. Define f,(x) = %, f,(Dh] = 8x,4,, f,(XA] = 56x%H3,
f:(0[A] = 336x3%8 for x € CA, and f(x) = f,(x) = f(x) = f.(x) = O on CB.
Then it is easy to see that these functions satisfy the hypotheses of the Whitney
extension theorem. If f ¢ C*(*, R) or B, R), and flo.y0z = fo(X), then in the
first case D*f(x) is bounded near zero, and in either case f|,, ., € B¥{x|x, = a}, R)
for some @ > 0. But this is impossible by Corollary 1. q.e.d.

We list some open problems:

(1) Does jjxfl e C(E — {0}, R) imply d(x, A) e CE — A, R) whenever 4
is convex and closed?

(2) Do nonseparable &7, p > 2, have C* partitions of unity?

(3) Does nonseparable Hilbert space have C* partitions of unity?

(4) Is Theorem 2 of § 4 true for Banach-valued functions on H or for func-
tions on non-Hilbertian Banach spaces with an appropriate change in (1)?

Added in proof. Since the submission of this paper Henryk Taruficyk has
obtained in [9] results which settle questions 2 and 3. We summarize some of
these results:

(i) A Banach space E admits C?, p = 1,2, -..; oo partitions of unity if
and only if there are a set A and a homeomorphic imbedding u: E — c,(A4)
with p, o u(x) € C? for all « ¢ A where p_ is the projection of ¢,(4) on its a-th
coordinate.
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Thus Taruficyk observes that any Hilbert space ¢,(B) has C* partitions of
unity by taking 4 = B U {1} and by defining u(x) by

Poou(x) = jx|f fora =1

=X, fora=4,5¢eB.

(ii) If E is a reflexive Banach space with an equivalent locally uniformly
convex norm of class C?, then E admits C? partitions of unity.

Thus #7? has C= p.o.u. if p is an even integer, and C?~! p.o.u. if p is an
odd integer.

(iii) A Banach space E has C? p.o.u. if and only if there is a g-locally finite
base of the topology of E consisting on nonzero sets of real valued functions of
class C2.

(iv) In a personal communication Tarusicyk has shown that E has B® p.o.u.
p < oo if there is a g-discrete base of the topology of E consisting of nonzeto
subsets of real valued functions of class B?. The author has proved the converse
statement. _

This generalizes Theorem 1. Also using Corollary 1 and the fact that every
metric space has a g-discrete base for the topology, it follows that every Hilbert
space admits B! partitions of unity.
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